Editorial: Suprastars of Chemistry

Editorial on the Research Topic
Suprastars of Chemistry

The field of Supramolecular Chemistry has rapidly evolved over the last decades to the point where it now influences a diverse range of research areas, drives technological breakthroughs, and often results in breathtaking feats of ingenuity along the way. None of these advancements would be possible without the creativity and talent of supramolecular chemists throughout the world, and this Research Topic aims to celebrate those scientists as leading experts in the field—the “Suprastars.”

In this collection, excellent works cover fundamental research on self-assembly behavior, structure-property relationships, and chirality control, as well as attractive applications such as bioimaging, sensing, photodynamic therapy, and other related areas. The self-assemblies and supramolecular systems are facilitated by various kinds of dynamic non-covalent interactions, such as π-π interaction, (Hunter and Sanders, 1990Shao et al., 2013Fagnani et al., 2017Xiao et al., 2019aMahl et al., 2022) macrocyclic host-guest interaction, (Yu et al., 2015Xiao et al., 2019bRoy et al., 2020Xiao et al.Fang et al., 2022) metal-coordination, (Sun et al., 2010McConnell et al., 2015Datta et al., 2018) and hydrophobic interactions (Chang et al., 2019Xiao et al., 2019c) etc., which endow the corresponding materials with outstanding and highly desirable properties including reversibility, tunability, and stimuli-responsiveness.

In particular, macrocyclic host-guest chemistry is a hot topic in supramolecular chemistry on account of the continuous development of supramolecular macrocycles, such as crown ethers, (Pedersen, 1967Price and Gibson, 2018Xiao et al., 2021) cyclodextrins, (Szejtli, 1998Harada et al., 2014) cucurbiturils, (Lagona et al., 2005Masson et al., 2012Ni et al., 2014Barrow et al., 2015Murray et al., 2017Chen et al., 2022Huang et al., 2022) calixarenes, (Böhmer, 1995Guo and Liu, 2014), and pillararenes (Xue et al., 2012Strutt et al., 2014Ogoshi et al., 2018Xiao et al., 2018Xiao et al., 2019dWan et al., 2022). Fullerenes remain important compounds with promising applications in biomedical research but their hydrophobicity limits deployment in the body. Zhang et al. developed a water-soluble supramolecular nanoformulation based on a deep cavitand calixarene system (SAC4A), which is able to host fullerene via a simple grinding approach. The system enables efficient activation of reactive oxygen species and can be used as a potential photodynamic agent. Duan et al. developed a pillararene-indicator displacement system. The water-soluble pillar [6]arene macrocycle can greatly enhance the fluorescence of safranine T (ST) due to host-guest induced twisted intramolecular charge-transfer. The system can be used as a turn-off sensor for caffeine in water due to guest exchange.

As another important property, manipulating molecular chirality has been attracting significant attention. Liu et al. synthesized several new chiral pillar [4]arene [1]quinone derivatives, which showed unique chiroptical properties. Notably, the benzene sidearm attached pillar [4]arene [1]quinone derivative exhibited solvent- and complexation-driven chirality switching. Hemicucurbiturils are chiral macrocyclic hosts similar to the cucurbituril macrocycles and their monomeric units are connected by one row of methylene bridges. Ustrnul et al. systematically studied the complexation between cyclohexanohemicucurbit [n]urils and eighteen polar organic guests.

Metal-coordination is another important non-covalent interaction that is usually employed by supramolecular chemists to construct discrete entities including metallacycles (Chakrabarty et al., 2011) and metallacages, (Mal et al., 2009Sun et al., 2010) as well as infinite architectures such as supramolecular polymers (Winter et al., 2016) (Winter and Schubert, 2016) and metal-organic frameworks (MOF) (Stock et al., 2012), (Stock and Biswas, 2012) etc. One particularly interesting application of supramolecular analytical methods is in the assessment of food freshness. As such, Lyu et al. developed a self-assembled colorimetric chemosensor array for the qualitative and quantitative detection of sulfur-containing amino acids. It is noteworthy that the sensor is based on the reversible coordination between off-the-shelf catechol dyes and Zn2+, which offered obvious color changes in the presence of the analytes.

Helicates are another class of interesting metallo-supramolecular architecture that may have potential biological applications. Lisboa et al. and Lisboa et al. synthesized two new di (2,2′-bipyridine) ligands, which can self-assemble into specific metallo-supramolecular [Fe2(L)3](BF4)4 cylinders. Moreover, in vitro cytotoxicity assays showed that these helicates were active against several cancer cell lines.

Metal-organic cages (MOCs) also belong to metallo-supramolecular architectures and their cavities are capable of binding guest molecules. In a mini review, Diaz and Lewis focused on the structural flexibility in MOCs and summarized typical examples of MOCs reported in recent years.

Supramolecular polymers based on coordination interactions are polymeric arrays in which the building blocks are brought together via metal coordination. Mackenzie et al. synthesized a 1D coordination polymer consisting of silver(I) ions bound to a [2.2] paracyclophane scaffold. The coordination polymer was fully characterized by single crystal X-ray analysis and shows strong blue fluorescence.

MOFs provide an effective template for polymerization of polymers with precisely controlled structures within the nanochannels. Wonanke et al. explored the interaction of styrene and 3,4-ethylenedioxythiophene (EDOT) at the surface and in the nanopore of a Zn-MOF. They discovered that the monomer-MOF interaction is strongest inside the nanochannels and increases with the number of monomers.

Given the π-π interaction between large polycyclic aromatic hydrocarbon (PAH) molecules and fullerene, Gover et al. developed a new combined TEM and MALDI-TOF mass spectroscopic approach to detect different nano-architectures.

Hydrophobic interactions predictably drive amphiphiles to form nano-assemblies in water. Ranathunge et al. linked a hydrophobic dye TRPZ to a hydrophilic dendron via azide-alkyne Huisgen cycloaddition to prepare an amphiphilic system TRPZ-bisMPA, which can further form nanoparticles in aqueous media. The authors reported that TRPZ-bisMPA nanoparticles are of low cytotoxicity, hence being suitable for bioimaging.

In another work, Magna et al. developed a facile and rapid method to achieve chiral porphyrin films on a glass support. They systematically studied the solvent effect and glass substrate on the film formation.

In summary, this Research Topic has highlighted the most advanced and cutting-edge developments in supramolecular chemistry led by “Suprastars” from all over the world. By taking the advantage of dynamic supramolecular interactions, a series of functional self-assembled nano-architectures have successfully been constructed and been fully evaluated. More interestingly, the intersection of supramolecular chemistry and other disciplines has yielded new characterization methods and novel functional materials. We believe that more and more “Suprastars” in the field of supramolecular chemistry will emerge and as a result more and more impact rich research continue to evolve.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

We acknowledge financial support by the National Natural Science Foundation of China (No. 21702020, for TX), European Union’s H2020-FETOPEN grant 828779 (INITIO) and Estonian Research Council grant PRG399 (for VB), the U.S. National Science Foundation (No. CHE-1904534, for RC). TJ wishes to thank the Royal Society for a Wolfson Research Merit Award and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University for support (No. 2020ZD01).

References

Barrow, S. J., Kasera, S., Rowland, M. J., del Barrio, J., and Scherman, O. A. (2015). Cucurbituril-Based Molecular Recognition. Chem. Rev. 115, 12320–12406. doi:10.1021/acs.chemrev.5b00341

PubMed Abstract | CrossRef Full Text | Google Scholar

Böhmer, V. (1995). Calixarenes, Macrocycles with(Almost) Unlimited Possibilities. Angew. Chem. Int. Ed. Engl. 34, 713–745. doi:10.1002/anie.199507131

CrossRef Full Text | Google Scholar

Chakrabarty, R., Mukherjee, P. S., and Stang, P. J. (2011). Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 111, 6810–6918. doi:10.1021/cr200077m

PubMed Abstract | CrossRef Full Text | Google Scholar

Chang, Y., Jiao, Y., Symons, H. E., Xu, J.-F., Faul, C. F. J., and Zhang, X. (2019). Molecular Engineering of Polymeric Supra-amphiphiles. Chem. Soc. Rev. 48, 989–1003. doi:10.1039/c8cs00806j

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, X., Huang, Z., Sala, R. L., McLean, A. M., Wu, G., Sokołowski, K., et al. (2022). On-Resin Recognition of Aromatic Oligopeptides and Proteins through Host-Enhanced Heterodimerization. J. Am. Chem. Soc. 144, 8474–8479. doi:10.1021/jacs.2c02287

PubMed Abstract | CrossRef Full Text | Google Scholar

Datta, S., Saha, M. L., and Stang, P. J. (2018). Hierarchical Assemblies of Supramolecular Coordination Complexes. Acc. Chem. Res. 51, 2047–2063. doi:10.1021/acs.accounts.8b00233

PubMed Abstract | CrossRef Full Text | Google Scholar

Fagnani, D. E., Sotuyo, A., and Castellano, R. K. (2017). “π-π Interactions,” in Comprehensive Supramolecular Chemistry II. Editor J. L. Atwood (Oxford: Elsevier), 121–148. doi:10.1016/b978-0-12-409547-2.12485-0

CrossRef Full Text | Google Scholar

Fang, G., Yang, X., Chen, S., Wang, Q., Zhang, A., and Tang, B. (2022). Cyclodextrin-based Host-Guest Supramolecular Hydrogels for Local Drug Delivery. Coord. Chem. Rev. 454, 214352. doi:10.1016/j.ccr.2021.214352

CrossRef Full Text | Google Scholar

Guo, D.-S., and Liu, Y. (2014). Supramolecular Chemistry of P-Sulfonatocalix[n]arenes and its Biological Applications. Acc. Chem. Res. 47, 1925–1934. doi:10.1021/ar500009g

PubMed Abstract | CrossRef Full Text | Google Scholar

Harada, A., Takashima, Y., and Nakahata, M. (2014). Supramolecular Polymeric Materials via Cyclodextrin-Guest Interactions. Acc. Chem. Res. 47, 2128–2140. doi:10.1021/ar500109h

PubMed Abstract | CrossRef Full Text | Google Scholar

Huang, Z., Chen, X., O’Neill, S. J. K., Wu, G., Whitaker, D. J., Li, J., et al. (2022). Highly Compressible Glass-like Supramolecular Polymer Networks. Nat. Mat. 21, 103–109. doi:10.1038/s41563-021-01124-x

CrossRef Full Text | Google Scholar

Hunter, C. A., and Sanders, J. K. M. (1990). The Nature of .pi.-.Pi. Interactions. J. Am. Chem. Soc. 112, 5525–5534. doi:10.1021/ja00170a016

CrossRef Full Text | Google Scholar

Lagona, J., Mukhopadhyay, P., Chakrabarti, S., and Isaacs, L. (2005). The Cucurbit[n]uril Family. Angew. Chem. Int. Ed. 44, 4844–4870. doi:10.1002/anie.200460675

CrossRef Full Text | Google Scholar

Mahl, M., Niyas, M. A., Shoyama, K., and Würthner, F. (2022). Multilayer Stacks of Polycyclic Aromatic Hydrocarbons. Nat. Chem. 14, 457–462. doi:10.1038/s41557-021-00861-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Mal, P., Breiner, B., Rissanen, K., and Nitschke, J. R. (2009). White Phosphorus Is Air-Stable within a Self-Assembled Tetrahedral Capsule. Science 324, 1697–1699. doi:10.1126/science.1175313

PubMed Abstract | CrossRef Full Text | Google Scholar

Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., and Lu, X. (2012). Cucurbituril Chemistry: a Tale of Supramolecular Success. RSC Adv. 2, 1213–1247. doi:10.1039/C1RA00768H

CrossRef Full Text | Google Scholar

McConnell, A. J., Wood, C. S., Neelakandan, P. P., and Nitschke, J. R. (2015). Stimuli-Responsive Metal-Ligand Assemblies. Chem. Rev. 115, 7729–7793. doi:10.1021/cr500632f

PubMed Abstract | CrossRef Full Text | Google Scholar

Murray, J., Kim, K., Ogoshi, T., Yao, W., and Gibb, B. C. (2017). The Aqueous Supramolecular Chemistry of Cucurbit[n]urils, Pillar[n]arenes and Deep-Cavity Cavitands. Chem. Soc. Rev. 46, 2479–2496. doi:10.1039/c7cs00095b

PubMed Abstract | CrossRef Full Text | Google Scholar

Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., and Tao, Z. (2014). Self-Assemblies Based on the “Outer-Surface Interactions” of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Acc. Chem. Res. 47, 1386–1395. doi:10.1021/ar5000133

PubMed Abstract | CrossRef Full Text | Google Scholar

Ogoshi, T., Kakuta, T., and Yamagishi, T. A. (2018). Applications of Pillar[ N ]arene‐Based Supramolecular Assemblies. Angew. Chem. Int. Ed. 58, 2197–2206. doi:10.1002/anie.201805884

PubMed Abstract | CrossRef Full Text | Google Scholar

Pedersen, C. J. (1967). Cyclic Polyethers and Their Complexes with Metal Salts. J. Am. Chem. Soc. 89, 7017–7036. doi:10.1021/ja01002a035

CrossRef Full Text | Google Scholar

Price, T. L., and Gibson, H. W. (2018). Supramolecular Pseudorotaxane Polymers from Biscryptands and Bisparaquats. J. Am. Chem. Soc. 140, 4455–4465. doi:10.1021/jacs.8b01480

PubMed Abstract | CrossRef Full Text | Google Scholar

Roy, I., Garci, A., Beldjoudi, Y., Young, R. M., Pe, D. J., Nguyen, M. T., et al. (2020). Host-Guest Complexation-Mediated Supramolecular Photon Upconversion. J. Am. Chem. Soc. 142, 16600–16609. doi:10.1021/jacs.0c05445

PubMed Abstract | CrossRef Full Text | Google Scholar

Shao, C., Stolte, M., and Würthner, F. (2013). Quadruple π Stack of Two Perylene Bisimide Tweezers: A Bimolecular Complex with Kinetic Stability. Angew. Chem. Int. Ed. 52, 7482–7486. doi:10.1002/anie.201302479

CrossRef Full Text | Google Scholar

Stock, N., and Biswas, S. (2012). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 112, 933–969. doi:10.1021/cr200304e

PubMed Abstract | CrossRef Full Text | Google Scholar

Strutt, N. L., Zhang, H., Schneebeli, S. T., and Stoddart, J. F. (2014). Functionalizing Pillar[n]arenes. Acc. Chem. Res. 47, 2631–2642. doi:10.1021/ar500177d

PubMed Abstract | CrossRef Full Text | Google Scholar

Sun, Q.-F., Iwasa, J., Ogawa, D., Ishido, Y., Sato, S., Ozeki, T., et al. (2010). Self-Assembled M 24 L 48 Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation. Science 328, 1144–1147. doi:10.1126/science.1188605

PubMed Abstract | CrossRef Full Text | Google Scholar

Szejtli, J. (1998). Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 98, 1743–1754. doi:10.1021/cr970022c

PubMed Abstract | CrossRef Full Text | Google Scholar

Wan, X., Li, S., Tian, Y., Xu, J., Shen, L.-C., Zuilhof, H., et al. (2022). Twisted Pentagonal Prisms: AgnL2 Metal-Organic Pillars. Chem. doi:10.1016/j.chempr.2022.04.001

CrossRef Full Text | Google Scholar

Winter, A., and Schubert, U. S. (2016). Synthesis and Characterization of Metallo-Supramolecular Polymers. Chem. Soc. Rev. 45, 5311–5357. doi:10.1039/C6CS00182C

PubMed Abstract | CrossRef Full Text | Google Scholar

Xiao, T., Qi, L., Zhong, W., Lin, C., Wang, R., and Wang, L. (2019). Stimuli-responsive Nanocarriers Constructed from Pillar[n]arene-Based Supra-amphiphiles. Mat. Chem. Front. 3, 1973–1993. doi:10.1039/c9qm00428a

CrossRef Full Text | Google Scholar

Xiao, T., Wang, J., Shen, Y., Bao, C., Li, Z.-Y., Sun, X.-Q., et al. (2021). Preparation of a Fixed-Tetraphenylethylene Motif Bridged Ditopic Benzo-21-Crown-7 and its Application for Constructing AIE Supramolecular Polymers. Chin. Chem. Lett. 32, 1377–1380. doi:10.1016/j.cclet.2020.10.0371001-8417

CrossRef Full Text | Google Scholar

Xiao, T., Xu, L., Wang, J., Li, Z.-Y., Sun, X.-Q., and Wang, L. (2019). Biomimetic Folding of Small Organic Molecules Driven by Multiple Non-covalent Interactions. Org. Chem. Front. 6, 936–941. doi:10.1039/c9qo00089e

CrossRef Full Text | Google Scholar

Xiao, T., Xu, L., Zhong, W., Zhou, L., Sun, X.-Q., Hu, X.-Y., et al. (2018). Advanced Functional Materials Constructed from Pillar[n]arenes. Isr. J. Chem. 58, 1183–1193. doi:10.1002/ijch.201800026

CrossRef Full Text | Google Scholar

Xiao, T., Xu, L., Zhou, L., Sun, X.-Q., Lin, C., and Wang, L. (2019). Dynamic Hydrogels Mediated by Macrocyclic Host-Guest Interactions. J. Mat. Chem. B 7, 1526–1540. doi:10.1039/C8TB02339E

CrossRef Full Text | Google Scholar

Xiao, T., Zhou, L., Xu, L., Zhong, W., Zhao, W., Sun, X.-Q., et al. (2019). Dynamic Materials Fabricated from Water Soluble Pillar[n]arenes Bearing Triethylene Oxide Groups. Chin. Chem. Lett. 30, 271–276. doi:10.1016/j.cclet.2018.05.039

CrossRef Full Text | Google Scholar

Xue, M., Yang, Y., Chi, X., Zhang, Z., and Huang, F. (2012). Pillararenes, A New Class of Macrocycles for Supramolecular Chemistry. Acc. Chem. Res. 45, 1294–1308. doi:10.1021/ar2003418

PubMed Abstract | CrossRef Full Text | Google Scholar

Yu, G., Jie, K., and Huang, F. (2015). Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs. Chem. Rev. 115, 7240–7303. doi:10.1021/cr5005315

PubMed Abstract | CrossRef Full Text | Google Scholar

Skills

Posted on

April 4, 2018